

 Navigation

 	
 index

 	
 next |

 	Workflow reference 0.1 documentation

Web development workflow reference

A collection of best practises focused at (front-end) web development: HTML,
CSS, JS and tooling. This is the workflow we use internally at
Visualspace [http://www.visualspace.nl].

You can find a rendered version of these best practises on
Read the Docs [http://workflow-reference.readthedocs.org/en/latest/].

For editing this documentation, please refer to the
Sphinx manual [http://sphinx-doc.org/contents.html] and the
reStructuredText Primer [http://sphinx-doc.org/rest.html]
in particular.

Note

This documentation is currently in a very early stage of development and should not be considered ready for production use.

Contents:

	Workflows
	Single page static apps

	Multi-page static sites

	Generated static sites

	PhoneGap applications

	Reference
	HTML

	Style sheets

	JavaScript

	Tools

	Unix

	Design patterns

	Design

To do

Todo

Include one of the following alternatives as bad practise and the
others as explicitly deprecated.

	normalise.css?

	Compass‘ CSS reset

	Eric Meyer’s original

(The original entry is located in /var/build/user_builds/workflow-reference/checkouts/latest/reference/css/index.rst, line 129.)

Todo

There are several references here, with varied quality and usability. Please remove what’s not usable and summarise the
useful bits.

(The original entry is located in /var/build/user_builds/workflow-reference/checkouts/latest/reference/css/index.rst, line 289.)

Todo

Document favicon best practises.

(The original entry is located in /var/build/user_builds/workflow-reference/checkouts/latest/reference/html/index.rst, line 30.)

Todo

This section suggests several alternate approaches for responsive images. Add a recommendation for a particular approach or a proper argumentation allowing sensible decisions.

(The original entry is located in /var/build/user_builds/workflow-reference/checkouts/latest/reference/html/index.rst, line 118.)

Indices and tables

	Index

	Search Page

 Copyright 2013, Visualspace.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Workflow reference 0.1 documentation

Workflows

Contents:

	Single page static apps

	Multi-page static sites

	Generated static sites

	PhoneGap applications
	Viewport scaling

 Copyright 2013, Visualspace.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Workflow reference 0.1 documentation

 	Workflows

Single page static apps

 Copyright 2013, Visualspace.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Workflow reference 0.1 documentation

 	Workflows

Multi-page static sites

 Copyright 2013, Visualspace.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Workflow reference 0.1 documentation

 	Workflows

Generated static sites

 Copyright 2013, Visualspace.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Workflow reference 0.1 documentation

 	Workflows

PhoneGap applications

Viewport scaling

Note

Using target-densitydpi is deprecated. See: https://petelepage.com/blog/2013/02/viewport-target-densitydpi-support-is-being-deprecated/

 Copyright 2013, Visualspace.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Workflow reference 0.1 documentation

Reference

Contents:

	HTML
	HTML5

	Style sheets
	Modular architecture

	Style Precedence

	Browser reset

	Sass

	Compass

	Grid systems

	CSS Workflow

	Viewport

	Device Independent Pixels

	Device pixel ratio

	JavaScript
	Asynchronous Module Definition

	Template libraries

	MVC/MVP libraries

	Underscore

	DOM Libraries

	Node.js

	Tools
	Yeoman

	Grunt

	Assemble

	Bower

	Twitter’s Bootstrap

	Cross-browser testing

	Polyfills

	Unix
	Concepts

	Commands

	Design patterns
	Don’t Repeat Yourself

	Keep It Simple, Stupid!

	Design
	Perceived size calculation

 Copyright 2013, Visualspace.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Workflow reference 0.1 documentation

 	Reference

HTML

HTML5

See also

	HTML5 Rocks

	http://www.html5rocks.com/

	HTML5 Doctor

	http://html5doctor.com/

	W3Schools

	http://www.w3schools.com/

Favicon

Todo

Document favicon best practises.

Doctype

When creating pages, make sure to use a Doctype declaration. For HTML5 this
means all HTML files should start with:

<!DOCTYPE html>

Warning

Before the doctype declaration, no spaces, characters or other content is allowed.

See also

	Doctype at HTML5 Doctor

	http://html5doctor.com/element-index/#doctype

App Cache

This explicitly allows browsers to download web application for offline
availability. This uses a so-called cache manifest which looks like this:

<VERSION IDENIFIER>
CACHE MANIFEST
FALLBACK:
This will cause any uncached URL to be substituted with offline.html
/ /offline.html
NETWORK:
These resources will only be available online.
/checking.cgi
CACHE:
These resources will be downloaded in the background and cached
/offline.html
/test.css
/test.js
/test.png

Note

The cached files are only updated when the contents of the
manifest file have changed. Hence, it is essential that a some kind of
version identifier or last modified date be added in a comment in the
file.

Note

Using a cache manifest causes the cached files to be loaded instead of the
online version of files, while uploads are downloaded in the background.
Updated files will only be available after a reload of the page, which
can be automated using JavaScript.

Note

For HTML5 offline app cache to function it is absolutely essential that
the MIME type be set to text/cache-manifest.

See also

	Cache manifest in HTML5

	https://en.wikipedia.org/wiki/Cache_manifest_in_HTML5

	A Beginner’s Guide to Using the Application Cache

	http://www.html5rocks.com/en/tutorials/appcache/beginner/

Video

See also

	HTML5 Video at W3Schools

	http://www.w3schools.com/html/html5_video.asp

	Video.js

	http://www.videojs.com/

Responsive images

Within HTML5, several tools are available to support multi-resolution images, each one complementing the other. For example:

<picture>
 <source srcset="med.jpg 1x, med-hd.jpg 2x" media="(min-width: 40em)" />
 <source srcset="sm.jpg 1x, sm-hd.jpg 2x" />

</picture>

This snippet uses the <picture> element together with the srcset attribute.

Todo

This section suggests several alternate approaches for responsive images. Add a recommendation for a particular approach or a proper argumentation allowing sensible decisions.

See also

	W3C: Use Cases and Requirements for Standardizing Responsive Images

	http://usecases.responsiveimages.org/

Srcset

The srcset attribute allowed developers to specify a list of sources for an image attribute, to be delivered based on the pixel density of the user’s display:

See also

	WebKit Has Implemented srcset, And It’s A Good Thing

	http://mobile.smashingmagazine.com/2013/08/21/webkit-implements-srcset-and-why-its-a-good-thing/

srcset-polyfill

Device pixel ratio

Picture

The picture element is an image container whose source content is determined by one or more CSS media queries:

<picture>
 <source src="med.jpg" media="(min-width: 40em)" />
 <source src="sm.jpg" />

</picture>

See also

	HTML5 adaptive images: end of round one

	http://html5doctor.com/html5-adaptive-images-end-of-round-one/

	HTML5 <PICTURE> ELEMENT

	http://html5hub.com/html5-picture-element/

Picturefill

	W3C

	http://www.w3.org/TR/2013/WD-html-picture-element-20130226/

 Copyright 2013, Visualspace.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Workflow reference 0.1 documentation

 	Reference

Style sheets

See also

Pears are common patterns of markup & style [http://pea.rs/]

Modular architecture

Every project needs some organization. Throwing every new style you
create onto the end of a single file would make finding things more
difficult and would be very confusing for anybody else working on the
project.

See also

	Scalable and Modular Architecture for CSS (SMACSS)

	http://smacss.com/book/

	The Sass Way

	http://thesassway.com/

File structure

There are several ways of organizing CSS into files. Whereas
traditionally it was easier to put all the styles for a single site
either into a single file or to simply concatenate and compress a
bunch of files, modern style languages like Sass and Less allow
for much smarter and potentially faster ways to set things up.

One way to setup a (S)CSS file structure is a combination of an
‘onion’ and a modular pattern. The modular pattern assures maximal
reusability of design patterns and common solutions to common problems
(DRY). The onion model helps us steer clear of
precedence issues.

While being a work in progress, the import order in a hypothetical
main.scss would look as follows:

// Modular mixins. These should generate no CSS of themselves but merely
// make mixins, variables and functions available and can be reused
// from site to site.
@import "buttons";
@import "shades";
...

// Project-specific modules (again: not producing any actual CSS output)
@import "variables";
@import "colours";
@import "fonts";

// Common site-wide components
@import "reset"; // Browser reset
@import "tags"; // Tag selectors
@import "grid"; // Grid system
@import "classes"; // Common classes (object-based / SMACSS)
@import "ids"; // Common ID-referenced styles (keep these to a minimum)

// App-specific overrides of common ids and classes
// (Try to minimize tag selectors here)
@import "admin";
@import "shop";
@import "blog";
...

// Media-specific overrides of tags, classes, apps and grid.
@import "media";

Warning

This is a very early sketch of a mere candidate of a CSS structure which
is untested and not yet ready for actual implementation. Unless you’re
brave.

See also

	How to structure a Sass project

	http://thesassway.com/beginner/how-to-structure-a-sass-project

Naming conventions

See also

	Modular CSS naming conventions

	http://thesassway.com/advanced/modular-css-naming-conventions

Style Precedence

CSS Specificity is one of the most difficult concepts to grasp in Cascading
Stylesheets. The different weight of selectors is usually the reason why your
CSS-rules don’t apply to some elements, although you think they should have.

Every selector has its place in the specificity hierarchy. There are four
distinct categories which define the specificity level of a given selector:

	Inline styles (Presence of style in document).
An inline style lives within your XHTML document. It is attached directly
to the element to be styled. E.g. <h1 style="color: #fff;">

	IDs (# of ID selectors)
ID is an identifier for your page elements, such as #div.

	Classes, attributes and pseudo-classes (# of class selectors).
This group includes .classes, [attributes] and pseudo-classes such
as :hover, :focus etc.

	Elements and pseudo-elements (# of Element (type) selectors).
Including for instance :before and :after.

See also

	CSS Specificity: Things You Should Know

	http://coding.smashingmagazine.com/2007/07/27/css-specificity-things-you-should-know/

	Understanding Style Precedence in CSS: Specificity, Inheritance, and the Cascade

	http://www.vanseodesign.com/css/css-specificity-inheritance-cascaade/

Browser reset

A CSS Reset (or “Reset CSS”) is a set of CSS rules that resets the
styling of all HTML elements to a consistent baseline across browsers.

Todo

Include one of the following alternatives as bad practise and the
others as explicitly deprecated.

	normalise.css?

	Compass‘ CSS reset

	Eric Meyer’s original

See also

	What Is A CSS Reset?

	http://www.cssreset.com/what-is-a-css-reset/

	Eric Meyer’s original Reset CSS

	http://meyerweb.com/eric/tools/css/reset/

normalise.css

normalise.css

A modern, HTML5-ready alternative to CSS resets.

Normalize.css makes browsers render all elements more consistently and in line
with modern standards. It precisely targets only the styles that need normalizing.

See also

http://necolas.github.io/normalize.css/

Sass

Sass is an extension of CSS that adds power and elegance to the basic language.
It allows you to use variables [http://sass-lang.com/documentation/file.SASS_REFERENCE.html#variables_], nested rules [http://sass-lang.com/documentation/file.SASS_REFERENCE.html#nested_rules], mixins [http://sass-lang.com/documentation/file.SASS_REFERENCE.html#mixins], inline imports [http://sass-lang.com/documentation/file.SASS_REFERENCE.html#import], and more,
all with a fully CSS-compatible syntax. Sass helps keep large stylesheets
well-organized, and get small stylesheets up and running quickly,
particularly with the help of Compass.

See also

Sass reference [http://sass-lang.com/documentation/file.SASS_REFERENCE.html]

Media queries

As of 3.2 (the current release), Sass has smart support for CSS3 media queries [http://webdesignerwall.com/tutorials/css3-media-queries]. This allows for patterns like:

$information-phone: "only screen and (max-width : 320px)";

@media #{$information-phone} {
 background: red;
}

This compiles to:

@media screen and (max-device-width: 320px) {
 background: red;
}

See also

http://thesassway.com/intermediate/responsive-web-design-in-sass-using-media-queries-in-sass-32

Compass

Compass is a CSS authoring framework based on Sass providing:

	Cross browser CSS3 mixins that take advantage of available pre-spec vendor prefixes

	Mixins for common typography patterns.

	Mixins for other common styling patterns.

	An optional Browser reset component.

	Page layout modules for: grid backgrounds, sticky footers, stretching.

See also

	Compass Reference

	http://compass-style.org/reference/compass/

Grid systems

Several grid systems exist to make the life of web designers easier. We currently recommend the usage of the Susy responsive grid system, unless Twitter’s Bootstrap is used, which works better with the already included grid system.

Susy

Susy is a responsive grid system for Compass.

See also

	Using Susy with Yeoman

	http://susy.oddbird.net/guides/getting-started/#start-yeoman

	Susy documentation

	http://susy.oddbird.net/

CSS Workflow

See: https://vimeo.com/15982903

Viewport

For modern web development, we have to account for several types of viewports:

	The visual viewport; the part of the page that’s currently on-screen.

	The layout viewport; the viewport referenced to in CSS.

	The ideal viewport, where the layout viewport is equal to the visual viewport.

In responsive designs we generally want an ideal viewport and adjust the elements to the available pixels instead of zooming the whole site. For this we use the viewport meta tag in the HTML header to disable zoom and set the width of the layout viewport equal to that of the device:

<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1, user-scalable=no">

For full-screen applications which are not meant to scroll, also set the height of the viewport to the device height:

<meta name="viewport" content="width=device-width, height=device-height, initial-scale=1, maximum-scale=1, user-scalable=no">

Note

The device pixels (device-width and device-height) are not necessarily equal to actual screen pixels due to the device pixel ratio. See Device Independent Pixels.

See also

	CSS Device Adaptation With @viewport

	http://blog.teamtreehouse.com/thinking-ahead-css-device-adaptation-with-viewport

	Stop using the viewport meta tag (until you know how to use it)

	http://blog.javierusobiaga.com/stop-using-the-viewport-tag-until-you-know-ho

	Mozilla: Using the viewport meta tag to control layout on mobile browsers

	https://developer.mozilla.org/en-US/docs/Mozilla/Mobile/Viewport_meta_tag

	Mobiles and Tablets – Viewport Sizes

	http://i-skool.co.uk/mobile-development/web-design-for-mobiles-and-tablets-viewport-sizes/

	Browser compatibility — viewports

	http://www.quirksmode.org/mobile/tableViewport.html

Device Independent Pixels

Device Independent Pixels

Todo

There are several references here, with varied quality and usability. Please remove what’s not usable and summarise the
useful bits.

See also

	A Pixel is not a Pixel by Peter-Paul Koch

	http://fronteers.nl/congres/2012/sessions/a-pixel-is-not-a-pixel-peter-paul-koch

	Towards A Retina Web

	http://coding.smashingmagazine.com/2012/08/20/towards-retina-web/

	A Pixel Identity Crisis

	http://alistapart.com/article/a-pixel-identity-crisis/

Device pixel ratio

Viewport

Device pixel ratio

devicePixelRatio is the ratio between physical pixels and device-independent pixels (dips) on the device:

window.devicePixelRatio = physical pixels / dips

See also

	devicePixelRatio

	http://www.quirksmode.org/blog/archives/2012/06/devicepixelrati.html

	More about devicePixelRatio

	http://www.quirksmode.org/blog/archives/2012/07/more_about_devi.html

Device Independent Pixels

Viewport

 Copyright 2013, Visualspace.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Workflow reference 0.1 documentation

 	Reference

JavaScript

Asynchronous Module Definition

Asynchronous module definition (AMD) is an API for modular JavaScript
development such that defined modules can be loaded asynchronously while
automatically taking care of loading dependencies.

It is useful in improving the performance of websites by bypassing synchronous
loading of modules along with the rest of the site content. In addition to
loading multiple JavaScript files at runtime, AMD can be used during development
to keep JavaScript files encapsulated in many different files.

Defining a module definition in AMD looks as follows:

define(function (require) {
 var dependency1 = require('dependency1'),
 dependency2 = require('dependency2');

 return function () {};
});

For AMD dependencies, the extension .js is automatically added to modules,
so dependency1 will be loaded from dependency1.js.

Note

A common alternate API is to define requirements when calling the define()
function. While sometimes shorter, this quickly becomes dreadful to read
and is therefore considered an anti-pattern.

For example (note the lack of readability):

define(["require", "jquery", "blade/object", "blade/fn", "rdapi",
 "oauth", "blade/jig", "blade/url", "dispatch", "accounts",
 "storage", "services", "widgets/AccountPanel", "widgets/TabButton",
 "widgets/AddAccount", "less", "osTheme", "jquery-ui-1.8.7.min",
 "jquery.textOverflow"],
function (require, $, object, fn, rdapi,
 oauth, jig, url, dispatch, accounts,
 storage, services, AccountPanel, TabButton,
 AddAccount, less, osTheme) {

});

See also

	Asynchronous module definition

	https://en.wikipedia.org/wiki/Asynchronous_module_definition

Require.js

RequireJS is perhaps the most used AMD loader. It is optimized for in-browser
use but can also be used with Node.js to build and optimize JS before
distributing.

See also

	RequireJS API

	http://requirejs.org/docs/api.html

	Using RequireJS with jQuery

	http://requirejs.org/docs/jquery.html

	RequireJS Optimizer

	http://requirejs.org/docs/optimization.html

Template libraries

Several client-side template languages exist, the most elementary one being
the one included in Underscore.

Handlebars

Handlebars is an extendable but compatible variant of the Moustache minimal
logic-less template library.

See also

	Handlebars

	http://handlebarsjs.com/

	Moustache

	http://mustache.github.io/

MVC/MVP libraries

Backbone

Backbone.js gives structure to web applications by providing models with
key-value binding and custom events, collections with a rich API of enumerable
functions, views with declarative event handling, and connects it all to your
existing API over a RESTful JSON interface.

Backbone requires Underscore and is commonly used with a
templating library and a
DOM library.

See also

	Backbone.js

	http://backbonejs.org/

Underscore

Underscore is a util library required by Backbone, including a minimalist
template engine.

It provides 80-odd functions that support both the usual
functional suspects: map, select, invoke — as well as more specialized
helpers: function binding, javascript templating, deep equality testing,
and so on. It delegates to built-in functions, if present, so modern browsers
will use the native implementations of forEach, map, reduce, filter, every,
some and indexOf.

Note

Several performance-optimized compatible drop-in replacements for
Underscore exist which are much faster and are recommended over
the original Underscore library: Lazy.js, Lo-Dash.

See also

	Underscore.js

	http://underscorejs.org/

	Lo-Dash

	http://lodash.com/

	Lazy.js

	http://danieltao.com/lazy.js/

DOM Libraries

The DOM (Document Object Model) is an in-memory representation of the HTML
structure in a web page, which can be accessed using so-called DOM libraries,
the best example of which is jQuery.

DOM libraries provide uniform access for iterating over, reading, manipulating
and responding to events on live elements in the browser.

See also

	jQuery

	http://jquery.com/

	DOM Introduction

	http://www.quirksmode.org/dom/intro.html

	DOM on Wikipedia

	https://en.wikipedia.org/wiki/Document_Object_Model

Zepto

Zepto is a minimalist JavaScript library for modern browsers with a largely
jQuery-compatible API. Because Zepto lacks support for Internet Explorer, it
is much smaller and faster than jQuery while providing largely
equivalent functionality.

As such, it can often be used as a drop-in replacement using the
following snippet for jQuery fallback on IE:

<script>
document.write('<script src=' +
('__proto__' in {} ? 'zepto' : 'jquery') +
'.js><\/script>')
</script>

See also

	Zepto.js

	http://zeptojs.com/

Node.js

Node.js is a platform for easily building fast, scalable network applications
using JavaScript.

See also

	The Node Beginner Book

	http://www.nodebeginner.org/

	A guided introduction to Node.js

	https://www.youtube.com/watch?v=jo_B4LTHi3I

	Node.js API docs

	http://nodejs.org/api/

NPM

Node Package Manager. Installs, publishes and manages node programs.

By default, NPM installs packages and dependencies in the current directory,
yielding the equivalent of Python’s VirtualEnv [https://pypi.python.org/pypi/virtualenv]. This is a particular
convenience when installing project dependencies, for example:

git clone git@github.com:alexyoung/nodepad.git nodepad
cd nodepad
npm install

node app.js

This installs Nodepad [http://dailyjs.com/2010/11/01/node-tutorial/], a Node notepad part of a tutorial series on DailyJS [http://dailyjs.com].

Alternately, to install packages globally use the -g option. For example:

npm install -g yeomen

This makes sure the yo command of Yeoman, Grunt and other
commands are available regardless of the Current Working Directory.

Web application frameworks

There exist several frameworks to aid in the development of Node web
applications. Some of these are:

	express [http://expressjs.com/]

	partial.js [http://www.partialjs.com/]

 Copyright 2013, Visualspace.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Workflow reference 0.1 documentation

 	Reference

Tools

Tools used for HTML, Style sheets and JavaScript in web development.

Yeoman

Yeoman bundles Grunt and Bower with the scaffolding tool
Yo used to setup a new web application
as follows:

yo webapp

See also

	Yeoman

	http://yeoman.io/

	Yo

	https://github.com/yeoman/yo

Grunt

Grunt is a build tool for compiling static HTML, CSS, JS and the likes from
source files such as SCSS. It can be used to automatically recompile, show
and/or reload files in the browser by running:

grunt watch

See also

	Grunt

	http://gruntjs.com/

Assemble

Assemble is a static site generator for use with Grunt. Starting an
assemble project is easy with Yeoman:

npm install -g generator-assemble
mkdir project && cd project
yo assemble

See also

	Using assemble with Yeoman (adding Yeoman to an existing project)

	http://www.fettblog.eu/blog/2013/09/02/using-assemble-io-with-yeoman-ios-webapp-gruntfile/

	assemble

	http://assemble.io/

	Yeoman assemble generator

	https://github.com/assemble/generator-assemble

Bower

Bower is used like a package manager for client-side JS, CSS and other
packages. It automatically installs, updates and manages libraries such
as Twitter’s Bootstrap. For example, installing Backbone is easy:

bower install backbone

This will also include Backbone dependencies such as Underscore.

See also

	Bower

	http://bower.io/

Twitter’s Bootstrap

Bootstrap is a comprehensive front-end framework consisting of:

	A basic HTML templates [http://getbootstrap.com/getting-started/#template] and good examples [http://getbootstrap.com/getting-started/#examples].

	CSS [http://getbootstrap.com/css/] with a grid systemm, sensible defaults for tags and styling
for UI elements.

	Reusable components [http://getbootstrap.com/components/] built to provide iconography, dropdowns, navigation,
alerts, popovers, and much more.

	jQuery plugins [http://getbootstrap.com/javascript/] for common interaction patterns.

The original version of bootstrap is built using Less CSS [http://lesscss.org/]
but a port using Compass is available as Sass Bootstrap.

See also

	Bootstrap

	http://getbootstrap.com/

	Sass Bootstrap

	http://alademann.github.io/sass-bootstrap/

Cross-browser testing

It is essential to test the design and functioning of a site across a range of
different browsers and devices. To make this simpler, several services exist
to create screenshots of webapps in different browser environments and/or to
have live access to apps on different browsers and devices.

See also

	BrowserStack

	http://www.browserstack.com/

	SauceLabs

	https://saucelabs.com/

Polyfills

Tools allowing new HTML and CSS features to be used in browser that do not (yet) support them.

Picturefill

An adaptive (‘retina’) images approach that you can use today that mimics the proposed Picture.

See also

https://github.com/scottjehl/picturefill

srcset-polyfill

See also

https://github.com/borismus/srcset-polyfill

 Copyright 2013, Visualspace.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Workflow reference 0.1 documentation

 	Reference

Unix

Elementary survival guide for the UNIX terminal. This guide assumes the bash [https://en.wikipedia.org/wiki/Bash_(Unix_shell)] shell is used.

Concepts

A good reference for computer terms can be found at Computer Hope [http://www.computerhope.com/jargon.htm].

Shell

A shell or command-line interpreter is a simple textual interface
allowing users to execute commands on a UNIX system. Typically, a
shell displays the Command Prompt and allows users to type in
commands which will be execute by the press of the return key.

A commonly used shell is bash [https://en.wikipedia.org/wiki/Bash_(Unix_shell)].

See also

	Shell on Computer Hoper

	http://www.computerhope.com/jargon/s/shell.htm

	Shell

	https://en.wikipedia.org/wiki/Shell_(computing)#Text_.28CLI.29_shells

Current Working Directory

The current directory or current working directory is the directory
which is currently open in the user’s terminal. The value of the
working directory can usually be read from the command prompt:

drbob@swordfish ~/Development/workflow-reference/unix $

In this example ~/Development/workflow-reference/unix is the
working directory where ~ is a common abbreviation for the user’s
home directory.

Note

The specific command prompt might look different depending on the
configuration of your particular computer.

The value of the working directory can be found at any time using the
pwd command:

drbob@swordfish ~/Development/workflow-reference/unix $ pwd
/Users/drbob/Development/workflow-reference/unix

See also

	Current Directory on Computer Hope

	http://www.computerhope.com/jargon/c/currentd.htm

	Current Working Directory Definition

	http://www.linfo.org/current_directory.html

	Working directory on Wikipedia

	https://en.wikipedia.org/wiki/Working_directory

Home Directory

This is the directory where the user stores all of his or her personal information and files as well as log in scripts and user information. The user’s home directory is commonly abbreviated as ~.

Returning to the user’s home directory from any other directory can be
accomplished with the cd command:

drbob@swordfish ~/Development/workflow-reference $ cd
drbob@swordfish ~ $

The Current Working Directory is now equal to the user’s home directory so that the
full path name to the home directory can be found through pwd:

drbob@swordfish ~ $ pwd
/Users/drbob

See also

	Home Directory on Computer Hope

	http://www.computerhope.com/jargon/h/homedir.htm

Command Prompt

See also

	Command Prompt on Computer Hope

	http://www.computerhope.com/jargon/c/commprom.htm

Path Name

See also

	Path Name on Computer Hope

	http://www.computerhope.com/jargon/p/path.htm

Commands

Some common UNIX commands.

Change Directory (cd)

Changes into a particular (sub)directory or returns to the user’s
home directory when no (sub)directory is specified.

See also

https://en.wikipedia.org/wiki/Cd_(command)

pwd

Returns the name of the Current Working Directory.

 Copyright 2013, Visualspace.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Workflow reference 0.1 documentation

 	Reference

Design patterns

A design pattern is a general reusable solution to a commonly occurring problem within a given context.

See also

	Design patterns

	https://en.wikipedia.org/wiki/Software_design_pattern

	Django Design Philosophies

	https://docs.djangoproject.com/en/dev/misc/design-philosophies/

	Seven Principles Of Software Development

	http://c2.com/cgi/wiki?SevenPrinciplesOfSoftwareDevelopment

Don’t Repeat Yourself

Every distinct concept and/or piece of data should live in one, and only one, place. Redundancy is bad. Normalization is good.

The framework, within reason, should deduce as much as possible from as little as possible.

See also

	DRY on the Portland Pattern Repository

	http://c2.com/cgi/wiki?DontRepeatYourself

	DRY

	https://en.wikipedia.org/wiki/Don’t_repeat_yourself

Keep It Simple, Stupid!

Design is not a haphazard process. There are many factors to consider in any design effort. All design should be as simple as possible, but no simpler. This facilitates having a more easily understood, and easily maintained system. This is not to say that features, even internal features, should be discarded in the name of simplicity. Indeed, the more elegant designs are usually the more simple ones. Simple also does not mean “quick and dirty.” In fact, it often takes a lot of thought and work over multiple iterations to simplify. The payoff is software that is more maintainable and less error-prone.

See also

	KISS

	https://en.wikipedia.org/wiki/KISS_principle

 Copyright 2013, Visualspace.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 previous |

 	Workflow reference 0.1 documentation

 	Reference

Design

Perceived size calculation

See also

	Web Type, Meet Size Calculator

	http://alistapart.com/blog/post/web-type-meet-size-calculator

 Copyright 2013, Visualspace.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	Workflow reference 0.1 documentation

Index

 A
 | C
 | D
 | H
 | J
 | N
 | S
 | U
 | W
 | Z

A

 	

 	
 AMD

 	

 	
 see Asynchronous Module Definition

 	

 	Asynchronous Module Definition

C

 	

 	command interpreter

 	command-line interface

 	CSS

 	

 	Current Working Directory

 	
 CWD

 	

 	
 see Current Working Directory

D

 	

 	DOCTYPE

 	

 	DOM

H

 	

 	HTML

J

 	

 	JavaScript

 	

 	
 JS

 	

 	
 see JavaScript

N

 	

 	
 Node

 	

 	
 see Node.js

 	

 	Node.js

S

 	

 	shell

U

 	

 	UNIX

W

 	

 	
 Working Directory

 	

 	
 see Current Working Directory

Z

 	

 	
 Zepto

 	

 	
 see Zepto.js

 	

 	Zepto.js

 Copyright 2013, Visualspace.
 Created using Sphinx 1.1.3.

 js/index.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		Workflow reference 0.1 documentation »

JavaScript

Asynchronous Module Definition

Asynchronous module definition (AMD) is an API for modular JavaScript
development such that defined modules can be loaded asynchronously while
automatically taking care of loading dependencies.

It is useful in improving the performance of websites by bypassing synchronous
loading of modules along with the rest of the site content. In addition to
loading multiple JavaScript files at runtime, AMD can be used during development
to keep JavaScript files encapsulated in many different files.

Defining a module definition in AMD looks as follows:

define(function (require) {
 var dependency1 = require('dependency1'),
 dependency2 = require('dependency2');

 return function () {};
});

For AMD dependencies, the extension .js is automatically added to modules,
so dependency1 will be loaded from dependency1.js.

Note

A common alternate API is to define requirements when calling the define()
function. While sometimes shorter, this quickly becomes dreadful to read
and is therefore considered an anti-pattern.

For example (note the lack of readability):

define(["require", "jquery", "blade/object", "blade/fn", "rdapi",
 "oauth", "blade/jig", "blade/url", "dispatch", "accounts",
 "storage", "services", "widgets/AccountPanel", "widgets/TabButton",
 "widgets/AddAccount", "less", "osTheme", "jquery-ui-1.8.7.min",
 "jquery.textOverflow"],
function (require, $, object, fn, rdapi,
 oauth, jig, url, dispatch, accounts,
 storage, services, AccountPanel, TabButton,
 AddAccount, less, osTheme) {

});

See also

		Asynchronous module definition

		https://en.wikipedia.org/wiki/Asynchronous_module_definition

Require.js

RequireJS is perhaps the most used AMD loader. It is optimized for in-browser
use but can also be used with Node.js to build and optimize JS before
distributing.

See also

		RequireJS API

		http://requirejs.org/docs/api.html

		Using RequireJS with jQuery

		http://requirejs.org/docs/jquery.html

		RequireJS Optimizer

		http://requirejs.org/docs/optimization.html

Template libraries

Several client-side template languages exist, the most elementary one being
the one included in Underscore.

Handlebars

Handlebars is an extendable but compatible variant of the Moustache minimal
logic-less template library.

See also

		Handlebars

		http://handlebarsjs.com/

		Moustache

		http://mustache.github.io/

MVC/MVP libraries

Backbone

Backbone.js gives structure to web applications by providing models with
key-value binding and custom events, collections with a rich API of enumerable
functions, views with declarative event handling, and connects it all to your
existing API over a RESTful JSON interface.

Backbone requires Underscore and is commonly used with a
templating library and a
DOM library.

See also

		Backbone.js

		http://backbonejs.org/

Underscore

Underscore is a util library required by Backbone, including a minimalist
template engine.

It provides 80-odd functions that support both the usual
functional suspects: map, select, invoke — as well as more specialized
helpers: function binding, javascript templating, deep equality testing,
and so on. It delegates to built-in functions, if present, so modern browsers
will use the native implementations of forEach, map, reduce, filter, every,
some and indexOf.

Note

Several performance-optimized compatible drop-in replacements for
Underscore exist which are much faster and are recommended over
the original Underscore library: Lazy.js, Lo-Dash.

See also

		Underscore.js

		http://underscorejs.org/

		Lo-Dash

		http://lodash.com/

		Lazy.js

		http://danieltao.com/lazy.js/

DOM Libraries

The DOM (Document Object Model) is an in-memory representation of the HTML
structure in a web page, which can be accessed using so-called DOM libraries,
the best example of which is jQuery.

DOM libraries provide uniform access for iterating over, reading, manipulating
and responding to events on live elements in the browser.

See also

		jQuery

		http://jquery.com/

		DOM Introduction

		http://www.quirksmode.org/dom/intro.html

		DOM on Wikipedia

		https://en.wikipedia.org/wiki/Document_Object_Model

Zepto

Zepto is a minimalist JavaScript library for modern browsers with a largely
jQuery-compatible API. Because Zepto lacks support for Internet Explorer, it
is much smaller and faster than jQuery while providing largely
equivalent functionality.

As such, it can often be used as a drop-in replacement using the
following snippet for jQuery fallback on IE:

<script>
document.write('<script src=' +
('__proto__' in {} ? 'zepto' : 'jquery') +
'.js><\/script>')
</script>

See also

		Zepto.js

		http://zeptojs.com/

Node.js

Node.js is a platform for easily building fast, scalable network applications
using JavaScript.

See also

		The Node Beginner Book

		http://www.nodebeginner.org/

		A guided introduction to Node.js

		https://www.youtube.com/watch?v=jo_B4LTHi3I

		Node.js API docs

		http://nodejs.org/api/

NPM

Node Package Manager. Installs, publishes and manages node programs.

By default, NPM installs packages and dependencies in the current directory,
yielding the equivalent of Python’s VirtualEnv [https://pypi.python.org/pypi/virtualenv]. This is a particular
convenience when installing project dependencies, for example:

git clone git@github.com:alexyoung/nodepad.git nodepad
cd nodepad
npm install

node app.js

This installs Nodepad [http://dailyjs.com/2010/11/01/node-tutorial/], a Node notepad part of a tutorial series on DailyJS [http://dailyjs.com].

Alternately, to install packages globally use the -g option. For example:

npm install -g yeomen

This makes sure the yo command of Yeoman, Grunt and other
commands are available regardless of the Current Working Directory.

Web application frameworks

There exist several frameworks to aid in the development of Node web
applications. Some of these are:

		express [http://expressjs.com/]

		partial.js [http://www.partialjs.com/]

 © Copyright 2013, Visualspace.
 Created using Sphinx 1.1.3.

tools/index.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		Workflow reference 0.1 documentation »

Tools

Tools used for HTML, Style sheets and JavaScript in web development.

Yeoman

Yeoman bundles Grunt and Bower with the scaffolding tool
Yo used to setup a new web application
as follows:

yo webapp

See also

		Yeoman

		http://yeoman.io/

		Yo

		https://github.com/yeoman/yo

Grunt

Grunt is a build tool for compiling static HTML, CSS, JS and the likes from
source files such as SCSS. It can be used to automatically recompile, show
and/or reload files in the browser by running:

grunt watch

See also

		Grunt

		http://gruntjs.com/

Assemble

Assemble is a static site generator for use with Grunt. Starting an
assemble project is easy with Yeoman:

npm install -g generator-assemble
mkdir project && cd project
yo assemble

See also

		Using assemble with Yeoman (adding Yeoman to an existing project)

		http://www.fettblog.eu/blog/2013/09/02/using-assemble-io-with-yeoman-ios-webapp-gruntfile/

		assemble

		http://assemble.io/

		Yeoman assemble generator

		https://github.com/assemble/generator-assemble

Bower

Bower is used like a package manager for client-side JS, CSS and other
packages. It automatically installs, updates and manages libraries such
as Twitter’s Bootstrap. For example, installing Backbone is easy:

bower install backbone

This will also include Backbone dependencies such as Underscore.

See also

		Bower

		http://bower.io/

Twitter’s Bootstrap

Bootstrap is a comprehensive front-end framework consisting of:

		A basic HTML templates [http://getbootstrap.com/getting-started/#template] and good examples [http://getbootstrap.com/getting-started/#examples].

		CSS [http://getbootstrap.com/css/] with a grid systemm, sensible defaults for tags and styling
for UI elements.

		Reusable components [http://getbootstrap.com/components/] built to provide iconography, dropdowns, navigation,
alerts, popovers, and much more.

		jQuery plugins [http://getbootstrap.com/javascript/] for common interaction patterns.

The original version of bootstrap is built using Less CSS [http://lesscss.org/]
but a port using Compass is available as Sass Bootstrap.

See also

		Bootstrap

		http://getbootstrap.com/

		Sass Bootstrap

		http://alademann.github.io/sass-bootstrap/

Cross-browser testing

It is essential to test the design and functioning of a site across a range of
different browsers and devices. To make this simpler, several services exist
to create screenshots of webapps in different browser environments and/or to
have live access to apps on different browsers and devices.

See also

		BrowserStack

		http://www.browserstack.com/

		SauceLabs

		https://saucelabs.com/

 © Copyright 2013, Visualspace.
 Created using Sphinx 1.1.3.

_static/minus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		Workflow reference 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Visualspace.
 Created using Sphinx 1.1.3.

html/index.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		Workflow reference 0.1 documentation »

HTML

HTML5

See also

		HTML5 Rocks

		http://www.html5rocks.com/

		HTML5 Doctor

		http://html5doctor.com/

		W3Schools

		http://www.w3schools.com/

Doctype

When creating pages, make sure to use a Doctype declaration. For HTML5 this
means all HTML files should start with:

<!DOCTYPE html>

Warning

Before the doctype declaration, no spaces, characters or other content is allowed.

See also

		Doctype at HTML5 Doctor

		http://html5doctor.com/element-index/#doctype

App Cache

This explicitly allows browsers to download web application for offline
availability. This uses a so-called cache manifest which looks like this:

<VERSION IDENIFIER>
CACHE MANIFEST
FALLBACK:
This will cause any uncached URL to be substituted with offline.html
/ /offline.html
NETWORK:
These resources will only be available online.
/checking.cgi
CACHE:
These resources will be downloaded in the background and cached
/offline.html
/test.css
/test.js
/test.png

Note

The cached files are only updated when the contents of the
manifest file have changed. Hence, it is essential that a some kind of
version identifier or last modified date be added in a comment in the
file.

Note

Using a cache manifest causes the cached files to be loaded instead of the
online version of files, while uploads are downloaded in the background.
Updated files will only be available after a reload of the page, which
can be automated using JavaScript.

Note

For HTML5 offline app cache to function it is absolutely essential that
the MIME type be set to text/cache-manifest.

See also

		Cache manifest in HTML5

		https://en.wikipedia.org/wiki/Cache_manifest_in_HTML5

		A Beginner’s Guide to Using the Application Cache

		http://www.html5rocks.com/en/tutorials/appcache/beginner/

Video

See also

		HTML5 Video at W3Schools

		http://www.w3schools.com/html/html5_video.asp

		Video.js

		http://www.videojs.com/

 © Copyright 2013, Visualspace.
 Created using Sphinx 1.1.3.

_static/comment-close.png

unix/index.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		Workflow reference 0.1 documentation »

Unix reference

Elementary survival guide for the UNIX terminal. This guide assumes the bash [https://en.wikipedia.org/wiki/Bash_(Unix_shell)] shell is used.

Concepts

A good reference for computer terms can be found at Computer Hope [http://www.computerhope.com/jargon.htm].

Shell

A shell or command-line interpreter is a simple textual interface
allowing users to execute commands on a UNIX system. Typically, a
shell displays the Command Prompt and allows users to type in
commands which will be execute by the press of the return key.

A commonly used shell is bash [https://en.wikipedia.org/wiki/Bash_(Unix_shell)].

See also

		Shell on Computer Hoper

		http://www.computerhope.com/jargon/s/shell.htm

		Shell

		https://en.wikipedia.org/wiki/Shell_(computing)#Text_.28CLI.29_shells

Current Working Directory

The current directory or current working directory is the directory
which is currently open in the user’s terminal. The value of the
working directory can usually be read from the command prompt:

drbob@swordfish ~/Development/workflow-reference/unix $

In this example ~/Development/workflow-reference/unix is the
working directory where ~ is a common abbreviation for the user’s
home directory.

Note

The specific command prompt might look different depending on the
configuration of your particular computer.

The value of the working directory can be found at any time using the
pwd command:

drbob@swordfish ~/Development/workflow-reference/unix $ pwd
/Users/drbob/Development/workflow-reference/unix

See also

		Current Directory on Computer Hope

		http://www.computerhope.com/jargon/c/currentd.htm

		Current Working Directory Definition

		http://www.linfo.org/current_directory.html

		Working directory on Wikipedia

		https://en.wikipedia.org/wiki/Working_directory

Home Directory

This is the directory where the user stores all of his or her personal information and files as well as log in scripts and user information. The user’s home directory is commonly abbreviated as ~.

Returning to the user’s home directory from any other directory can be
accomplished with the cd command:

drbob@swordfish ~/Development/workflow-reference $ cd
drbob@swordfish ~ $

The Current Working Directory is now equal to the user’s home directory so that the
full path name to the home directory can be found through pwd:

drbob@swordfish ~ $ pwd
/Users/drbob

See also

		Home Directory on Computer Hope

		http://www.computerhope.com/jargon/h/homedir.htm

Command Prompt

See also

		Command Prompt on Computer Hope

		http://www.computerhope.com/jargon/c/commprom.htm

Path Name

See also

		Path Name on Computer Hope

		http://www.computerhope.com/jargon/p/path.htm

Commands

Some common UNIX commands.

Change Directory (cd)

Changes into a particular (sub)directory or returns to the user’s
home directory when no (sub)directory is specified.

See also

https://en.wikipedia.org/wiki/Cd_(command)

pwd

Returns the name of the Current Working Directory.

 © Copyright 2013, Visualspace.
 Created using Sphinx 1.1.3.

_static/up-pressed.png

_static/up.png

css/index.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		Workflow reference 0.1 documentation »

Style sheets

See also

Pears are common patterns of markup & style [http://pea.rs/]

Modular architecture

Every project needs some organization. Throwing every new style you
create onto the end of a single file would make finding things more
difficult and would be very confusing for anybody else working on the
project.

See also

		Scalable and Modular Architecture for CSS (SMACSS)

		http://smacss.com/book/

		The Sass Way

		http://thesassway.com/

File structure

There are several ways of organizing CSS into files. Whereas
traditionally it was easier to put all the styles for a single site
either into a single file or to simply concatenate and compress a
bunch of files, modern style languages like Sass and Less allow
for much smarter and potentially faster ways to set things up.

One way to setup a (S)CSS file structure is a combination of an
‘onion’ and a modular pattern. The modular pattern assures maximal
reusability of design patterns and common solutions to common problems
(DRY). The onion model helps us steer clear of
precedence issues.

While being a work in progress, the import order in a hypothetical
main.scss would look as follows:

// Modular mixins. These should generate no CSS of themselves but merely
// make mixins, variables and functions available and can be reused
// from site to site.
@import "buttons";
@import "shades";
...

// Project-specific modules (again: not producing any actual CSS output)
@import "variables";
@import "colours";
@import "fonts";

// Common site-wide components
@import "reset"; // Browser reset
@import "tags"; // Tag selectors
@import "grid"; // Grid system
@import "classes"; // Common classes (object-based / SMACSS)
@import "ids"; // Common ID-referenced styles (keep these to a minimum)

// App-specific overrides of common ids and classes
// (Try to minimize tag selectors here)
@import "admin";
@import "shop";
@import "blog";
...

// Media-specific overrides of tags, classes, apps and grid.
@import "media";

Warning

This is a very early sketch of a mere candidate of a CSS structure which
is untested and not yet ready for actual implementation. Unless you’re
brave.

See also

		How to structure a Sass project

		http://thesassway.com/beginner/how-to-structure-a-sass-project

Naming conventions

See also

		Modular CSS naming conventions

		http://thesassway.com/advanced/modular-css-naming-conventions

Style Precedence

CSS Specificity is one of the most difficult concepts to grasp in Cascading
Stylesheets. The different weight of selectors is usually the reason why your
CSS-rules don’t apply to some elements, although you think they should have.

Every selector has its place in the specificity hierarchy. There are four
distinct categories which define the specificity level of a given selector:

		Inline styles (Presence of style in document).
An inline style lives within your XHTML document. It is attached directly
to the element to be styled. E.g. <h1 style="color: #fff;">

		IDs (# of ID selectors)
ID is an identifier for your page elements, such as #div.

		Classes, attributes and pseudo-classes (# of class selectors).
This group includes .classes, [attributes] and pseudo-classes such
as :hover, :focus etc.

		Elements and pseudo-elements (# of Element (type) selectors).
Including for instance :before and :after.

See also

		CSS Specificity: Things You Should Know

		http://coding.smashingmagazine.com/2007/07/27/css-specificity-things-you-should-know/

		Understanding Style Precedence in CSS: Specificity, Inheritance, and the Cascade

		http://www.vanseodesign.com/css/css-specificity-inheritance-cascaade/

Browser reset

A CSS Reset (or “Reset CSS”) is a set of CSS rules that resets the
styling of all HTML elements to a consistent baseline across browsers.

Todo

Include one of the following alternatives as bad practise and the
others as explicitly deprecated.

		normalise.css?

		Compass‘ CSS reset

		Eric Meyer’s original

See also

		What Is A CSS Reset?

		http://www.cssreset.com/what-is-a-css-reset/

		Eric Meyer’s original Reset CSS

		http://meyerweb.com/eric/tools/css/reset/

normalise.css

normalise.css

A modern, HTML5-ready alternative to CSS resets.

Normalize.css makes browsers render all elements more consistently and in line
with modern standards. It precisely targets only the styles that need normalizing.

See also

http://necolas.github.io/normalize.css/

Sass

Sass is an extension of CSS that adds power and elegance to the basic language.
It allows you to use variables [http://sass-lang.com/documentation/file.SASS_REFERENCE.html#variables_], nested rules [http://sass-lang.com/documentation/file.SASS_REFERENCE.html#nested_rules], mixins [http://sass-lang.com/documentation/file.SASS_REFERENCE.html#mixins], inline imports [http://sass-lang.com/documentation/file.SASS_REFERENCE.html#import], and more,
all with a fully CSS-compatible syntax. Sass helps keep large stylesheets
well-organized, and get small stylesheets up and running quickly,
particularly with the help of Compass.

See also

Sass reference [http://sass-lang.com/documentation/file.SASS_REFERENCE.html]

Media queries

As of 3.2 (the current release), Sass has smart support for CSS3 media queries [http://webdesignerwall.com/tutorials/css3-media-queries]. This allows for patterns like:

$information-phone: "only screen and (max-width : 320px)";

@media #{$information-phone} {
 background: red;
}

This compiles to:

@media screen and (max-device-width: 320px) {
 background: red;
}

See also

http://thesassway.com/intermediate/responsive-web-design-in-sass-using-media-queries-in-sass-32

Compass

Compass is a CSS authoring framework based on Sass providing:

		Cross browser CSS3 mixins that take advantage of available pre-spec vendor prefixes

		Mixins for common typography patterns.

		Mixins for other common styling patterns.

		An optional Browser reset component.

		Page layout modules for: grid backgrounds, sticky footers, stretching.

See also

		Compass Reference

		http://compass-style.org/reference/compass/

Grid systems

Several grid systems exist to make the life of web designers easier.
One of these is contained in Twitter’s Bootstrap, another is provided by
Susy.

Susy

Susy is a responsive grid system for Compass.

See also

		Using Susy with Yeoman

		http://susy.oddbird.net/guides/getting-started/#start-yeoman

		Susy documentation

		http://susy.oddbird.net/

CSS Workflow

See: https://vimeo.com/15982903

Device Independent Pixels

Todo

There are several references here, with varied quality and usability. Please remove what’s not usable and summarise the
useful bits.

See also

		A Pixel is not a Pixel by Peter-Paul Koch

		http://fronteers.nl/congres/2012/sessions/a-pixel-is-not-a-pixel-peter-paul-koch

		Optimising for High Pixel Density Displays

		http://menacingcloud.com/?c=highPixelDensityDisplays

		A Pixel Identity Crisis

		http://alistapart.com/article/a-pixel-identity-crisis/

 © Copyright 2013, Visualspace.
 Created using Sphinx 1.1.3.

README.html

 Navigation

 		
 index

 		workflow-reference 0.1 documentation »

Web development workflow reference

A collection of best practises focused at (front-end) web development: HTML,
CSS, JS and tooling. This is the workflow we use internally at
Visualspace [http://www.visualspace.nl].

You can find a rendered version of these best practises on
Read the Docs [http://workflow-reference.readthedocs.org/en/latest/].

 © Copyright 2013, Visualspace.
 Created using Sphinx 1.1.3.

_static/plus.png

_static/down.png

patterns/index.html

 Navigation

 		
 index

 		
 previous |

 		Workflow reference 0.1 documentation »

Design patterns

A design pattern is a general reusable solution to a commonly occurring problem within a given context.

See also

		Design patterns

		https://en.wikipedia.org/wiki/Software_design_pattern

		Django Design Philosophies

		https://docs.djangoproject.com/en/dev/misc/design-philosophies/

		Seven Principles Of Software Development

		http://c2.com/cgi/wiki?SevenPrinciplesOfSoftwareDevelopment

Don’t Repeat Yourself

Every distinct concept and/or piece of data should live in one, and only one, place. Redundancy is bad. Normalization is good.

The framework, within reason, should deduce as much as possible from as little as possible.

See also

		DRY on the Portland Pattern Repository

		http://c2.com/cgi/wiki?DontRepeatYourself

		DRY

		https://en.wikipedia.org/wiki/Don’t_repeat_yourself

Keep It Simple, Stupid!

Design is not a haphazard process. There are many factors to consider in any design effort. All design should be as simple as possible, but no simpler. This facilitates having a more easily understood, and easily maintained system. This is not to say that features, even internal features, should be discarded in the name of simplicity. Indeed, the more elegant designs are usually the more simple ones. Simple also does not mean “quick and dirty.” In fact, it often takes a lot of thought and work over multiple iterations to simplify. The payoff is software that is more maintainable and less error-prone.

See also

		KISS

		https://en.wikipedia.org/wiki/KISS_principle

 © Copyright 2013, Visualspace.
 Created using Sphinx 1.1.3.

_static/comment.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

